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Abstract

Background: Subjective cognitive decline (SCD) is a preclinical stage along the Alzheimer’s disease (AD)
continuum. However, little is known about the aberrant patterns of connectivity and topological alterations of the
brain functional connectome and their diagnostic value in SCD.

Methods: Resting-state functional magnetic resonance imaging and graph theory analyses were used to
investigate the alterations of the functional connectome in 66 SCD individuals and 64 healthy controls (HC).
Pearson correlation analysis was computed to assess the relationships among network metrics, neuropsychological
performance and pathological biomarkers. Finally, we used the multiple kernel learning-support vector machine
(MKL-SVM) to differentiate the SCD and HC individuals.

Results: SCD individuals showed higher nodal topological properties (including nodal strength, nodal global
efficiency and nodal local efficiency) associated with amyloid-β levels and memory function than the HC, and these
regions were mainly located in the default mode network (DMN). Moreover, increased local and medium-range
connectivity mainly between the bilateral parahippocampal gyrus (PHG) and other DMN-related regions was found
in SCD individuals compared with HC individuals. These aberrant functional network measures exhibited good
classification performance in the differentiation of SCD individuals from HC individuals at an accuracy up to 79.23%.

Conclusion: The findings of this study provide insight into the compensatory mechanism of the functional
connectome underlying SCD. The proposed classification method highlights the potential of connectome-based
metrics for the identification of the preclinical stage of AD.
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Background
Alzheimer’s disease (AD), the most common form of
dementia, places a huge burden on modern society
[1]. Unfortunately, there is presently no approved ef-
fective treatment that can stop or slow the progres-
sion of AD. It is already widely believed that the
most effective treatment for AD will require interven-
tion in the early stage of the disease, even before
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clinical symptoms [2]. Emerging evidence indicates that
subjective cognitive decline (SCD), referring to self-
reported cognitive decline in the absence of objective cog-
nitive impairment, might serve as the typical preclinical
stage along the AD continuum [3]. The risk for SCD indi-
viduals to convert to mild cognitive impairment (MCI) or
AD is 4.5–6.5 times higher than that for normally ageing
individuals [4–6]. Therefore, a major goal is how to iden-
tify participants with SCD in an appropriate way.
Resting-state functional magnetic resonance imaging

(rs-fMRI) is a promising approach to characterize and
predict the progression of disease, and functional net-
work measures (including connectivity and topological
properties) are emerging as potential intermediate bio-
markers for SCD. Chiesa and colleagues focused on the
alterations of the basal forebrain networks associated
with AD-related pathological biomarkers in individuals
with SCD. Their research indicated that lower posterior
basal forebrain functional connectivity in the thalamus
and the hippocampus was correlated with higher global
amyloid-β (Aβ) load and contributed to understanding
the pathophysiological link between cholinergic dysfunc-
tion and Aβ accumulation in the preclinical stages of
AD [7]. The DZNE-Longitudinal Cognitive Impairment
and Dementia (DELCODE) study further demonstrated
that lower Aβ42 levels in SCD individuals were closely
related to the perceived decline in memory and language
performance [8]. In a series of functional neuroimaging
studies, Wang et al. reported that the SCD group
showed reduced default mode network (DMN) connect-
ivity in the right hippocampus relative to the healthy
controls (HC) [9]. According to the study by Dillen
et al., higher functional connectivity from the retrosple-
nial cortex to the frontal cortex was observed in individ-
uals with SCD than in the HC group [10]. Recently,
from the perspective of topological property, the SCD
individuals exhibited lower degree centrality in the infer-
ior parietal region and higher degree centrality in the bi-
lateral hippocampus and left fusiform gyrus than healthy
controls [11]. However, these above findings were com-
plicated by the fact that the different research teams
used different methods and strategies. To date, no study
has explored the altered functional network measures re-
lated to pathological biomarkers by combining connect-
ivity and topological properties at the whole-brain and
regional levels in SCD individuals.
If SCD individuals who are in the early stage of AD

can be identified, they could potentially benefit from
early targeted intervention. With the development of
neuroimaging, many studies have focused on identifying
brain functional alterations associated with the AD con-
tinuum, which could potentially be considered a bio-
marker of AD pathology. However, most of the above
findings were primarily obtained based on group-level

comparisons, which limited individual classification [12,
13]. To overcome this limitation, machine-learning
methods combining rs-fMRI have been used in the early
diagnosis of AD in recent years, and they have shown
tremendous potential in individual-based disease diagno-
sis [14, 15]. Khazaee et al. applied topological measures
as discriminating features to efficiently differentiate AD
patients from healthy individuals with high accuracy
[16]. In a subsequent study, Khazaee and colleagues fur-
ther demonstrated that topological measures of DMN-
related regions achieved great performance in the differ-
entiation of individuals with MCI from HC [17]. More-
over, Jie et al. proposed a novel connectivity-based
framework integrating multiple topological properties of
functional networks to improve the classification per-
formance of MCI individuals and healthy elderly individ-
uals [18]. Together, previous studies have applied
machine-learning techniques to investigate brain func-
tional networks for AD or MCI diagnosis. However, it
remains to be established whether machine-learning
methods combining rs-fMRI play important roles in the
differentiation of individuals with SCD from HC.
Here, we explored the association of altered functional

connectivity and topological properties of the brain func-
tional connectome with pathological biomarkers derived
from SCD individuals obtained from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database (http://
adni.loni.usc.edu). Furthermore, we combined machine-
learning techniques with functional network measures (in-
cluding connectivity and topological properties) to distin-
guish individuals with SCD from HC. This study may
provide insight into understanding the pathophysiological
mechanisms underlying SCD and provide potential quan-
titative neuroimaging biomarkers for SCD diagnosis.

Methods
Alzheimer’s Disease Neuroimaging Initiative
Data used in the preparation of this paper were obtained
from the ADNI database (http://adni.loni.usc.edu). The
ADNI was initially launched in 2003 (ADNI-1), headed
by Principal Investigator Michael W. Weiner, VA Med-
ical Center and University of California-San Francisco.
The primary aim of the ADNI has been to test whether
neuroimaging, biological markers and neuropsycho-
logical assessment could support the early diagnosis and
track the progression of AD. For more information, see
http://www.adni-info.org. The protocol was approved by
the ADNI and informed consent was obtained in accord-
ance with the Declaration of Helsinki.

Participants
In this study, we included 66 SCD subjects and 64 well-
matched HC from the ADNI database. The diagnostic
criteria were described in the ADNI manual (http://
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www.adni-info.org). Briefly, HC participants had no sub-
jective or informant-reported memory decline and nor-
mal performance on the Mini-Mental State Examination
(MMSE, between 24 and 30), Clinical Dementia Rating
(CDR, score = 0) and the Logical Memory (LM) Delayed
Recall (adjusted for education level); SCD participants
showed subjective memory concerns as evaluated by the
Cognitive Change Index (CCI; total score from the first
12 items ≥16) [19], normal cognitive performance on the
MMSE, CDR and LM-delayed recall, and no informant-
reported complaint of memory decline. We also ex-
cluded participants who had a history of significant
neurological and psychiatric illness (e.g., stroke, trau-
matic brain injury, depression and others).

Clinical and neuropsychological measurement
Demographic characteristics and neurocognitive per-
formance data were downloaded from the ADNI

database (http://adni.loni.usc.edu). For the primary ana-
lyses, all participants underwent a battery of cognitive
evaluations, including global cognitive function (MMSE)
and memory function [the Rey Auditory Verbal Learning
Test (RAVLT) total and delayed recall; LM-immediate
and delayed recall]. The geriatric depression scale-15
(GDS-15) was used to identify the clinical depression
(GDS-15 score > 5) and the neuropsychiatric inventory
(NPI) was used to assess the neuropsychiatric symptoms.

Apolipoprotein E genotyping
Apolipoprotein E (APOE) genotypes of participants in
this study were obtained from the ADNI database
(http://adni.loni.usc.edu, more details in the Supplemen-
tary material). All participants were classified as APOE
+/+ (ε4/ε4), APOE +/− (ε4/ε2 and ε4/ε3) and APOE −/−
(ε2/ε2, ε2/ε3 and ε3/ε3). Notably, not all participants

Table 1 Demographic and neuropsychological data

Items HC (n = 64) SCD (n = 66) Statistical Value P value

Age (years) 73.23 ± 6.69 71.28 ± 5.45 1.82 0.07b

Education (years) 16.56 ± 2.09 16.91 ± 2.13 −0.94 0.35b

Gender (male/female) 24/40 24/42 0.02 0.89a

APOE phenotypes (+/+, +/−, −/−) 62/64 (2/13/47) 58/66 (3/23/32) 5.70 0.06a

CSF Aβ1–42 (pg/mL) 25/64 (1401.04 ± 441.21) 11/66 (1284.44 ± 272.65) 0.81 0.43b

CSF t-tau (pg/mL) 25/64 (255.99 ± 129.08) 11/66 (185.44 ± 45.89) 1.75 0.09b

CSF p-tau (pg/mL) 25/64 (23.56 ± 14.02) 11/66 (16.19 ± 4.19) 1.70 0.10b

[18F] AV45 SUVRs 40/64 (1.11 ± 0.18) 34/66 (1.15 ± 0.18) −0.91 0.37b

Intracranial volume (cm3) 1390.55 ± 175.92 1407.89 ± 132.81 −0.64 0.53b

Gray matter volume (cm3) 593.04 ± 61.13 604.97 ± 44.95 −1.27 0.21b

White matter volume (cm3) 511.48 ± 83.31 514.20 ± 63.25 −0.21 0.83b

Ventricular volume (cm3) 286.03 ± 55.57 288.73 ± 52.68 −0.28 0.78b

Hippocampal volume (cm3) 8.93 ± 0.99 8.95 ± 0.88 −0.13 0.90b

Left hippocampal volume (cm3) 4.45 ± 0.50 4.48 ± 0.48 −0.36 0.72b

Right hippocampal volume (cm3) 4.48 ± 0.52 4.47 ± 0.43 0.12 0.91b

GDS-15 0 (0–1) 1 (0–1) −1.86 0.06c

NPI 0 (0–1) 0 (0–0.25) −0.78 0.44c

CCI – 20 (17.75–26) – –

MMSE 28.88 ± 1.53 29.02 ± 1.14 −0.59 0.55b

LM-immediate 15.28 ± 3.60 14.65 ± 3.20 1.01 0.29b

LM-delayed recall 11.31 ± 1.55 11.14 ± 1.58 0.64 0.52b

RAVLT-total 48.64 ± 9.64 46.42 ± 9.52 1.32 0.19b

RAVLT-delayed recall 6.31 ± 2.19 6.39 ± 2.26 −0.21 0.84b

No significant differences were found in the age, gender, years of education, APOE genotypes, CSF biomarkers, brain tissue volumes, psychological assessments
and cognitive performance between the HC and SCD group
Abbreviations: HC Health control, SCD Subjective cognitive decline, APOE Apolipoprotein E, CSF Cerebrospinal fluid, SUVR Standardized uptake values ratio, GDS
Geriatric depression scale, NPI Neuropsychiatric inventoryl, CCI Cognitive change index, MMSE Mini mental state examination, LM Logical Memory, RAVLT Rey
Auditory Verbal Learning Test
Values are presented as the mean ± standard deviation and median (interquartile range)
a the p value was obtained by χ2 test, b the p value was obtained by two-sample t tests, c the p value was obtained by Mann-Whitney tests
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had APOE genotype data, and detailed information is
shown in Table 1.

Cerebrospinal fluid biomarkers
Lumbar puncture and cerebrospinal fluid (CSF) sample
preparation were performed as described in the ADNI
manual (http://adni.loni.usc.edu/research/protocols/bios-
pecimens-protocols/, more details in the Supplementary
material). CSF Aβ1–42, t-tau and p-tau were measured
using INNOBIA AlzBio3 immunoassay kit-based re-
agents (Innotest, Fujirebio, Ghent, Belgium). Notably,
not all participants had CSF sample data since lumbar
puncture is an invasive operation. In this study, 11 out
of 66 SCD subjects and 25 out of 64 HC subjects had
CSF sample data available (Table 1).

[18F] AV45 positron emission tomography scans
[18F] AV45 positron emission tomography (PET) data
were processed as described in the standardized protocol
(http://adni.loni.usc.edu/methods/, more details in the
Supplementary material). Mean florbetapir standard up-
take value ratios (SUVRs) were computed within these
brain regions (lateral and medial anterior frontal, lateral
temporal, posterior cingulate, and lateral parietal cortex)
and normalized to the whole cerebellum as the reference
region. In this study, 34 out of 66 SCD individuals and
40 out of 64 HC subjects had PET SUVRs data available
(Table 1).

MRI acquisition
All participants were examined on a SIEMENS 3.0-T
scanner. The examination protocol included the high-
resolution T1-weighted sequence [repetition time (TR) =
2300 ms, flip angle (FA) = 9°, echo time (TE) = 2.98 ms,
inversion time (TI) = 900 ms, FOV = 256 × 240mm2,
number of slices = 176, spatial resolution = 1.2 × 1.1 × 1.1
mm3] and the rs-fMRI sequence [TR = 3000ms, TE = 30
ms, number of slices = 48, slice thickness = 3.4 mm,
number of volumes = 197, FOV = 220 × 220mm2, spatial
resolution = 3.44 × 3.44 × 3.40 mm3].

Image preprocessing and network construction
Brain tissue segmentation was performed using the
Computational Anatomy Toolbox (CAT12, http://www.
neuro.uni-jena.de/cat/) as implemented in the Statistical
Parametric Mapping analysis package (SPM12, http://
www.fil.ion.ucl.ac.uk/spm/soft-ware/spm12/). The main
preprocessing included correction for bias-field inhomo-
geneities; tissue segmentation into white matter (WM),
grey matter (GM) and CSF; and spatial normalization
with the DARTEL algorithm. The intracranial volume
was obtained by summing the volumes of the GM, WM
and CSF.

The rs-fMRI data were preprocessed by the Data Pro-
cessing & Analysis for Brain Imaging (DPABI V4.1,
http://rfmri.org/dpabi/). The main preprocessing steps
included slice time correction, head motion correction
(six head motion parameters), normalization to the
Montreal Neurological Institute (MNI) space (EPI tem-
plate with 3 mm isotropic voxels), filtering (0.01–0.1 Hz)
and multiple linear regression analysis (including the
Friston 24 parameters, cerebrospinal fluid and white
matter signals). Participants who had performed an an-
gular rotation > 2° or a displacement > 2 mm in any dir-
ection were excluded. In addition, the two groups did
not show significant differences in the mean frame-wise
displacement (FD) suggested by Jenkinson et al. [20]. To
define the network nodes, an automated anatomical la-
beling (AAL) atlas was performed to divide the whole
brain into 90 regions of interest (ROIs) (the abbrevia-
tions in Supplemental Table 1). To define the network
edge, we calculated the Pearson correlation of the re-
gional mean time series between each pair of 90 ROIs.
To further remove spurious correlations, only those cor-
relation coefficients whose corresponding p values were
lower than a statistical threshold (p < 0.05, Bonferroni-
corrected) were retained [21].

Network analysis
Network topological analyses
The topological properties of network were analyzed
using the Graph Theoretical Network Analysis Toolbox
(GRETNA, http://www.nitrc.org/projects/gretna/). We
evaluated the global properties of brain network by the
following measures: network strength, clustering coeffi-
cient, shortest path length, small-worldness, global effi-
ciency, local efficiency, hierarchy and assortativity. In
addition, we used nodal strength, nodal clustering coeffi-
cient, nodal shortest path length, nodal global efficiency
and nodal local efficiency to describe the regional prop-
erties of the functional network. The details on the defi-
nitions and mathematical equations of these parameters
are presented in the Supplementary material.

Hub distribution
Based on the individual weighted functional network, we
computed the rich club coefficient and normalized the
rich club coefficient for each participant [22]. Normal-
ized rich club coefficients higher than 1 over a range of
thresholds showed the existence of rich club
organization in the brain network. To identify the hub
distribution of the functional network, the top 14 (15%)
brain regions with the highest nodal degree across all
participants were defined as rich club regions [23, 24].
On the basis of the hub and non-hub regions, the con-
nections of the network were grouped into rich club
connections (between hub nodes and hub nodes), feeder
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connections (between hub nodes and non-hub nodes),
and local connections (between non-hub nodes and
non-hub nodes) (Fig. 2c) [25–27]. In addition, to con-
firm the stability of our results, we estimated the rich
club, feeder and local connections based on the top 10
and 20% node degree, respectively (more details in the
Supplementary material, Supplemental Figure 1). The
rich-club analysis was performed using GRETNA
toolbox.

Measures of connection distance
The physical connection distance between the 2 function-
ally connected brain regions was estimated as the Euclidean

distance (dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi−x jÞ2 þ ðyi−y jÞ2 þ ðzi−z jÞ2
q

, where x,

y, and z are the stereotactic coordinates of the centroid of
each node) [28]. The distance threshold was chosen
through the identification of the shortest and longest pos-
sible distance between 2 nodes and the division of the dif-
ference into 3 equal ranges (short 7.61–55.4mm, medium
55.4–103.19mm, and long 103.19–150.98mm) [29].

Statistical analysis
Differences between the HC group and the SCD group
in demographic, neuroimaging characteristics and cogni-
tive performance were assessed using two-sample t test,
Mann-Whitney test or a chi-squared (χ2) test by Statis-
tical Package for Social Sciences (SPSS V22). The signifi-
cance level was set at p < 0.05.
The global properties of brain network were compared

by two-sample t test between the HC group and the
SCD group (p < 0.05, uncorrected). To determine the re-
gions with significantly altered topological properties,
two-sample t-tests were performed on the nodal proper-
ties by false-discovery rate correction (q = 0.05). The
connectivity strength of rich club, feeder and local con-
nections between the HC group and the SCD group
were compared by two-sample t-tests (p < 0.05,
uncorrected).
To localize the specific component (i.e., subnetwork)

that had significantly different connectivity strength be-
tween the HC group and the SCD group, we used a
network-based statistic (NBS) approach [30]. Briefly, a
primary threshold (p < 0.001, uncorrected) was applied
to the two-sample t test computed for each connection
to define a set of suprathreshold connections among
which any connected subnetworks and their size were
then determined. A corrected p value was computed for
each connected component using the null distribution of
the maximal component size (i.e., the number of links),
which was empirically derived by using a non-
parametric permutation approach (5000 permutations).

We performed Pearson correlation analyses to investi-
gate the relationships between altered network metrics
(functional connections and topological properties),
pathological makers and neuropsychological perform-
ance (p < 0.05, uncorrected).

Multiple kernel support vector machine
Apart from revealing altered functional connectivities
and topological properties of functional networks in the
SCD group, we also used these two kinds of features to
accurately differentiate the SCD individuals from the HC
group. We employed the original functional network
characteristics including 4005 (90 × 89/2) functional
connections and 270 (90 edge strength, 90 nodal global
efficiency and 90 nodal local efficiency) nodal properties,
as features for subsequent analyses. As in the previous
study, the two-sample t test was used to select features
(p < 0.001, uncorrected) [31, 32]. Then, the discriminant
analysis was performed by using the support vector ma-
chine (SVM) as a classifier. To further integrate the
complementary information of these two kinds of net-
work metrics (functional connections and nodal proper-
ties), we employed the multiple kernel learning SVM
(MKL-SVM) to fuse these features as described in other
studies [33, 34]. In the current study, the leave-one-out
cross-validation (LOOCV) strategy was used to assess
the classification performance. The performance of a
classifier could be quantified using accuracy, sensitivity,
specificity and the area under the receiver operating
characteristic (ROC) curve (AUC). Note that the specifi-
city represented the proportion of the HC individuals
correctly predicted, while the sensitivity represented the
proportion of the SCD individuals correctly predicted.
Accuracy is defined as (TP + TN)/(TP + TN + FN + FP),
sensitivity is defined as TP/(TP + FN) and specificity is
defined as TN/(FP + TN), where TN is the number of
true negatives (number of HC individuals correctly clas-
sified), TP is the number of true positives (number of
SCD individuals correctly classified), FN is the number
of false negatives (number of SCD individuals classified
as HC individuals), and FP is the number of false posi-
tives (number of HC individuals classified as SCD indi-
viduals). In addition, the AUC is an evaluation measure
based on the ROC curve, which illustrates the perform-
ance of the classifier. The ROC curve is delineated by
plotting 1-specificity and sensitivity at different
thresholds.

Results
Demographic and clinical characteristics
Demographic and clinical data for the HC group and
SCD group are summarized in Table 1. No significant
differences were found in the age, gender, years of edu-
cation, APOE genotypes, CSF biomarkers, brain tissue
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volumes, psychological assessments and cognitive per-
formance between the HC and SCD group.

Alterations of topological properties
First, we compared the global topological properties of
the whole brain between the HC and SCD group
(Table 2). We found significantly increased network
strength, clustering coefficient, global efficiency and local
efficiency in the SCD group compared with the HC
group (P < 0.05, uncorrected). Furthermore, the shortest
path length and small-worldness in the SCD group was
significantly lower than that in the HC group (P < 0.05,
uncorrected). No statistical significance was observed in
the hierarchy coefficient and assortativity coefficient be-
tween HC and SCD group.
Second, the nodal properties including the nodal

strength, nodal clustering coefficient, nodal shortest path
length, nodal global efficiency and nodal local efficiency
were compared for each brain region. The SCD group
showed significantly increased nodal strength in the
right superior frontal gyrus and the bilateral medial tem-
poral lobe (P < 0.05, FDR corrected, Fig. 1a, Supplemen-
tal Table 2). The increased nodal global efficiency and
nodal local efficiency mainly in the frontal, temporal and
parietal regions were found in the SCD group (P < 0.05,
FDR corrected, Fig. 1a and b, Supplemental Table 2).
Additionally, these brain regions were mainly distributed
in the DMN. Previous studies demonstrated that the
nodal global efficiency and nodal local efficiency are
closely related to the nodal shortest path length and
nodal clustering coefficient [22, 35–37]. The inverse of
nodal shortest path length and nodal clustering coeffi-
cient are the reasonable approximation of nodal global
efficiency and nodal local efficiency, respectively, when
there are no huge differences among the distances in the
connected network. By contrast, the efficiency measures

are more adoptable for the real networks and also more
applicable to disconnected networks [36, 37]. Thus, our
study mainly focused on the nodal strength, nodal global
efficiency and nodal local efficiency, and the results of
the nodal shortest path length and nodal clustering coef-
ficient were described in the Supplementary material,
Supplemental Figure 2 and Supplemental Table 3.

Group differences in rich club organization
The top 14 (15%) highest-degree nodes were chosen to
represent rich club nodes based on the averaged nodal
degree across all participants (Fig. 2a and b, orange
nodes). The remaining nodes were identified as periph-
eral regions. Moreover, significant differences in the
strength, degree and average strength of the feeder and
local connections were identified, while no significant
differences were found in rich club connections (Fig.
2d). In detail, the SCD group exhibited higher connec-
tions compared with the HC group (strength: feeder p =
0.002; local p = 0.002; degree: feeder p = 0.003; local p =
0.003; average strength feeder p = 0.028; local p = 0.045).

Group differences in functional connectivity based on the
NBS approach
Using the non-parametric NBS analysis, a single con-
nected subnetwork with 30 nodes and 35 connections
exhibited higher connection strength in the SCD group
than in the HC group (p < 0.001, corrected) (Fig. 3a and
Supplemental Table 4). These increased connections
were composed mainly of inter-region connections,
which linked the bilateral parahippocampal gyrus (PHG)
with the frontal gyrus, cingulate and paracingulate gyri
and parietal regions (23/35, 65.7%). Interestingly, 28 out
of 30 nodes within the subnetwork were classified into
non-hub regions and 33 out of 35 connections belonged
to the local connections (between non-hub nodes and
non-hub nodes) (Fig. 3b). In addition, the increased con-
nectivity was primarily involved in the medium-range
connections (33/35, 94.3%) based on the Euclidean dis-
tance (Fig. 3c).

Relationships among altered network metrics, biomarkers
and neuropsychological performance
We performed Pearson correlation analyses to investi-
gate the relationships between altered network metrics
(functional connections and nodal properties), patho-
logical markers and neuropsychological performance in
the HC and SCD group, respectively. In the HC group,
the scores on the LM-immediate was significantly nega-
tively correlated with nodal local efficiency of the left
median cingulate and paracingulate gyri (DCG.L) (r = −
0.303, P = 0.015, uncorrected) (Fig. 4a). However, no sig-
nificant relationship was detected between AD patho-
logical markers and altered network metrics in the HC

Table 2 Global properties of functional network in HC and SCD

Global properties HC SCD P value

Network strength 13.13 ± 3.21 14.90 ± 3.02 0.002*

Clustering coefficient 0.33 ± 0.04 0.35 ± 0.03 0.001*

Shortest path length 3.37 ± 0.34 3.20 ± 0.28 0.001*

Small-worldness 1.12 ± 0.15 1.05 ± 0.09 0.002*

Global efficiency 0.30 ± 0.03 0.31 ± 0.03 0.001*

Local efficiency 0.32 ± 0.02 0.33 ± 0.02 0.002*

Hierarchy 0.02 ± 0.13 −0.001 ± 0.13 0.387

Assortativity −0.04 ± 0.11 −0.09 ± 0.16 0.067

Significantly increased network strength, clustering coefficient, global
efficiency and local efficiency in the SCD group compared with the HC group
(P < 0.05, uncorrected). The shortest path length and small-worldness in the
SCD group was significantly lower than that in the HC group (P < 0.05,
uncorrected). No statistical significance was observed in the hierarchy
coefficient and assortativity coefficient between HC and SCD group
Abbreviations: HC Health control, SCD Subjective cognitive decline
*indicates a statistical difference between groups, p < 0.05
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group. In the SCD group, we found that the scores on
the LM-immediate were negatively associated with nodal
global efficiency of the right dorsolateral superior frontal
gyrus (SFGdor.R) (r = − 0.279, P = 0.023, uncorrected)
(Fig. 4b) and the left medial superior frontal gyrus
(SFGmed.L) (r = − 0.294, P = 0.017, uncorrected) (Fig.
4c). In addition, the CSF Aβ1–42 was negatively related
to the strength of the PHG.L (r = − 0.671, P = 0.024, un-
corrected) (Fig. 4d), the nodal efficiency of the right tem-
poral pole-superior temporal gyrus (TPOsup.R) (r = −
0.642, P = 0.033, uncorrected) (Fig. 4e) and the nodal
local efficiency of the right inferior frontal gyrus-
opercular part (IFGoperc.R) (r = − 0.654, P = 0.029, un-
corrected) (Fig. 4f). We also detected the relationships
between the CSF Aβ1–42 and the nodal strength of
PHG.L, nodal global efficiency of the TPOsup.R and
nodal local efficiency of the IFGoperc.R (Supplemental
Figure 3). Furthermore, we found that the CCI was posi-
tively related to the nodal global efficiency of TPOsup.L
in the SCD group (r = 0.297, P = 0.016, uncorrected)
(Fig. 4g).

Discriminative analysis
In this study, nodal properties and connections were uti-
lized to classify whether a sample belonged to the SCD
group (Fig. 5, Table 3 and Supplemental Table 5). For
single-modality analyses, the functional connections ex-
hibited a higher accuracy rate (76.15%) than the nodal
properties which achieved an accuracy rate of 66.15%.
Typically, classification accuracy improved after combin-
ing the network features of the two modalities, achieving
an accuracy of up to 79.23%.

Discussion
In this study, we investigated the connectivity and topo-
logical alterations of brain functional connectome

related to pathological biomarkers and their diagnostic
value in individuals with SCD. Higher nodal topological
properties (including nodal strength, nodal global effi-
ciency and nodal local efficiency) associated with CSF
Aβ1–42 levels were found in the SCD individuals than in
the HC, mainly located in DMN-related brain regions.
Moreover, SCD individuals showed increased local and
medium-range connectivity mainly between the bilateral
PHG and other DMN-related regions relative to the HC.
These enhanced functional network measures may re-
flect a compensatory mechanism that preserves memory
performance in SCD individuals. Importantly, the aber-
rant functional network measures exhibited good classi-
fication performance in differentiating SCD individuals
from healthy controls.
SCD is a stage of mild neuronal injury but with clinic-

ally normal cognitive performance remaining that con-
tributes to sufficient functional compensation [11, 38].
Here, we found that increased nodal properties, includ-
ing nodal strength, nodal global efficiency and nodal
local efficiency in the SCD group were mainly located in
the frontal, medial temporal, parietal and precuneus cor-
tices, which were distributed in the DMN. The DMN,
involved in self-reflection and memory processes, is
thought to be the most vulnerable functional network in
AD [39, 40]. Thus, we hypothesized that the higher
topological properties in the DMN might compensate
for impaired memory in SCD individuals. This finding
was in line with the study by Li et al., which reported
higher degree centrality in the medial temporal region in
SCD individuals than in healthy controls [11]. Another
study came to a similar conclusion, reporting that the
SCD group showed higher nodal efficiency in the DMN-
related region (e.g., parahippocampal gyrus) than the HC
group [41]. However, a brain structural connectome
study based on diffusion tensor imaging (DTI) indicated

Fig. 1 The altered nodal strength, nodal global efficiency and nodal local efficiency between SCD and HC. a The SCD group showing significantly
increased strength in four brain regions; b The SCD group showing significantly increased nodal global efficiency in 28 brain regions; c The SCD
group showing significantly increased nodal local efficiency in 27 brain regions. Abbreviations: SCD, subjective cognitive decline; HC, healthy
control; The color bar represents the label of brain regions in AAL-90 atlas
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that disrupted topological efficiency of the prefrontal re-
gions and thalamus was detected in SCD individuals
[42]. These results suggested that SCD might be at a
stage of structural damage and functional compensation
in the AD continuum and findings of functional neuro-
imaging studies complemented the findings derived from
structural neuroimaging studies.
Moreover, we found that the CSF Aβ1–42 level was

negatively related to the strength of PHG.L, the nodal
global efficiency of the TPOsup.R and the nodal local

efficiency of the IFGoperc.R. Based on the arterial spin
labeling (ASL) technique, reduced regional cerebral
blood flow (rCBF) was observed in the temporal regions
of MCI patients, but increased rCBF was found along
the midline DMN regions in SCD individuals compared
to healthy elderly individuals [43]. Interestingly, Perrotin
et al. observed increased Aβ deposition, determined by
PET, in the DMN region (e.g., prefrontal regions, cingu-
late cortex and precuneus) related to SCD subjects’ re-
duced confidence relative to that observed in the HC

Fig. 2 The altered rich club organization between SCD and HC. a and b The top 14 (15%) highest-degree nodes were chosen to represent rich
club nodes based on the averaged nodal degree across all participants; c The sketch map of rich club organization; d Significant differences in
the strength, degree and average strength of the feeder and local connections were identified, while no significant differences were found in rich
club connections. Abbreviations: SCD, subjective cognitive decline; HC, healthy control; * indicates a statistical difference between groups, p < 0.05
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group [44]. Taken together, the enhanced topological
properties in DMN-related regions may reflect the com-
pensatory mechanism associated with increased rCBF in
response to Aβ accumulation.
In addition to the enhanced topological properties in

the DMN, we found that SCD individuals also showed
increased local and medium-range connectivity mainly
between bilateral the PHG and other DMN-related re-
gions compared to the HC. There were three character-
istics summarized from this finding. First, the increased
connectivity in SCD individuals was mainly between the
bilateral PHG and other DMN-related regions. This
prior study demonstrated that the presence of cognitive
complaints, which was the primary diagnostic point of

SCD, was related to cortical atrophy in the PHG caused
early by AD neuropathology [45, 46]. Using the
fluorodeoxyglucose-PET (FDG-PET), Mosconi et al.
concluded that SCD individuals exhibited lower meta-
bolic rates for glucose in the PHG, inferior parietal lobe,
inferior frontal gyrus and other regions than HC, and
the greatest SCD-related reduction was observed in the
PHG [47]. Evidence from the task-state fMRI study
showed that SCD individuals with increased activation
in the PHG showed normal performance during the di-
vided attention condition task [48]. Recently, the only
longitudinal and placebo-controlled trial indicated that
SCD participants who received the ganglioside had
higher functional connectivity over the DMN regions

Fig. 3 The altered connected subnetwork based on the NBS analysis. A single connected subnetwork with 30 nodes and 35 connections, which
exhibited higher connection strength in the SCD group compared with the HC group (p < 0.001, corrected); b The 28 out of 30 node within the
subnetwork were classified into non-hub regions and the 33 out of 35 connections belonged to the local connections; c The increased
connectivity was primarily involved in the medium-range connections based on the Euclidean distance. Abbreviations: SCD, subjective cognitive
decline; HC, healthy control; NBS, network-based statistic
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associated with improved working memory performance
than those who did not [49]. Accordingly, the increased
connectivity between the PHG and other DMN-related
regions suggested that there may be compensatory
mechanisms in individuals with SCD that allowed them
to preserve clinically normal cognitive function.
Second, the increased connectivity in SCD individuals

was mainly classified into local connectivity linking non-
hub nodes to non-hub nodes. Jones et al. proposed a
cascading network deterioration in AD: the dysfunction
begins with a local overload and then transfers a pro-
cessing burden to the other systems that include prom-
inent connectivity hubs, eventually resulting in
widespread system failures [50]. Evidence from the brain

structure connectome found that connectivity among
non-hub nodes was disrupted but rich-club connectivity
remained stable in SCD individuals relative to MCI and
AD patients [23]. Similar findings were presented by
Daianu et al., which indicated predominant disruptions
in the peripheral network components in the early stage
of AD [51]. Due to rich club organization, hub nodes are
more densely connected among themselves than with
non-hub nodes. A resting-state neuroimaging study has
hypothesized that the local hyperconnectivity in SCD in-
dividuals is a result of brain plasticity after damage to
the neural network [11]. Therefore, we deduced that
local connectivity had more sufficient compensation
ability than rich-club connectivity in the preclinical stage

Fig. 4 Relationships among altered network metrics, biomarkers and neuropsycholohical performance. a The scores on the LM-immediate were
negatively associated with nodal local efficiency of the DCG.L (r = − 0.303, P = 0.015) in the HC group; b and c The scores on the LM-immediate
were negatively associated with nodal global efficiency of the SFGdor.R (r = − 0.279, P = 0.023) (b) and the SFGmed.L (r = − 0.294, P = 0.017) (c) in
the SCD group; d, e and f The CSF Aβ1–42 was negatively related to the nodal strength of PHG.L (r = − 0.671, P = 0.024) (d), nodal global
efficiency of the TPOsup.R (r = − 0.642, P = 0.033) (e) and nodal local efficiency of the IFGoperc.R (r = − 0.654, P = 0.029) (f) in the SCD group; g The
scores on the CCI were positively associated with nodal global efficiency of the TPOsup.L (r = 0.297, P = 0.016) in the SCD group. Abbreviations:
HC, healthy control; SCD, subjective cognitive decline; DCG.L, left median cingulate and paracingulate gyri; SFGdor.R, right dorsolateral superior
frontal gyrus; SFGmed.L, left medial superior frontal gyrus; PHG.L, left parahippocampal gyrus; TPOsup.R, right temporal pole-superior temporal
gyrus; IFGoperc.R, right inferior frontal gyrus-opercular part; CSF, cerebrospinal fluid; Aβ, amyloid-β; TPOsup.L, left temporal pole-superior temporal
gyrus; LM, Logical Memory; CCI, cognitive change index
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of AD. Third, the increased connectivity was primarily
involved in the medium-range connections based on the
Euclidean distance. Direct evidence suggested that long-
range connections could provide quick links among re-
mote brain regions and play a crucial role in maintaining
normal cognitive function [52]. In addition, the meta-
bolic costs of brain regions are closely related to inter-
regional connectivity distance: long-range connections
consume more energy than short-range connections
[28]. Dai et al. reported that impaired long-range con-
nections underlie the cognitive impairments in AD pa-
tients [53]. Hence, we speculated that increased
medium-range connections in SCD individuals might re-
flect the balance of metabolic costs and information
processing.
The identification of objective functional neuroimag-

ing biomarkers is urgently needed because it could assist
clinical decisions for individuals. To date, SCD diagnosis
mainly depends on the various psychological scales. In a
previous study, Zhang et al. used MRI, CSF biomarkers

and FDG-PET to differentiate MCI individuals from HC
and achieved a classification accuracy of 76.4% [54]. Due
to the invasive operation, this approach was probably
not good for SCD individuals who had normal cognition.
We combined connectivity and topological properties of
the functional connectome and then applied the MKL-
SVM framework to differentiate SCD individuals from
HC. We found that classification accuracy improved
after combining the network features of the two modal-
ities, achieving an accuracy of up to 79.23% and in-
creased functional connectivity between the PHG and
DMN-related regions showed the most discriminative
ability. Recently, Yan et al. employed structural and
functional connectivity to differentiate SCD individuals
from HC, and it exhibited good classification perform-
ance [55]. Compared to the classification performance of
single-modal methods (fMRI: 77.81%; DTI: 58.51%),
multimodal analyses exhibited the higher accuracy rate
(80.24%). However, this study ignored higher-order in-
teractions (i.e., topological properties) of many brain re-
gions working together, which might influence the
performance of the classifier.
Although our study tried to propose a new perspective

for understanding the aberrant functional network archi-
tecture and the early identification of SCD, a few limita-
tions still require future study. First, the topological
organization of the brain functional network is affected
by different parcellation strategies. Other brain-wide
graphs may be used to further assess the reliability in
the differentiation of SCD individuals. Second, this study
was performed on a small sample size of SCD individ-
uals with pathological markers, and we look forward to
expanding the sample size to validate our results in fu-
ture studies. A multicentre longitudinal study is essen-
tial, and an individualized predictive system for disease
progression in SCD individuals will be formulated in the
future. Third, some other analysis methods of graph the-
ory (for example, Minimum Spanning Tree) were not in-
cluded in this study and we will apply these new
methods in future studies [56, 57]. Fourth, no significant
results survived after FDR or Bonferroni correction in
correlation analyses. To explore their relationships, we
didn’t perform correction for multiple comparisons.
Last, we compared only SCD and HC individuals; we did

Fig. 5 Result of discriminative analysis. For single-modality analyses,
the functional connections exhibited the higher accuracy rate
(76.15%) than the nodal properties which achieved the accuracy rate
of 66.15%. Typically, classification accuracy improved after
combining the network features of the two modalities, achieving
the accuracy of up to 79.23%

Table 3 Results of the discrimination analyses derived from the SVM between HC and SCD

Feature Accuracy (%) Sensitivity (%) Specificity (%) AUC (%)

Nodal properties 66.15 64.06 68.18 69.82

Functional connections 76.15 70.31 81.82 84.02

Combining features 79.23 73.44 84.85 89.77

For single-modality analyses, the functional connections exhibited a higher accuracy rate (76.15%) than the nodal properties which achieved an accuracy rate of
66.15%. The classification accuracy improved after combining the network features of the two modalities, achieving an accuracy of up to 79.23%
Abbreviations: HC Health control, SCD Subjective cognitive decline, AUC The area under the curve, SVM Support vector machine
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not involve MCI and AD patients. We added those par-
ticipants in the subsequent study.

Conclusion
This study demonstrates a compensatory mechanism of
DMN-related connectivity and topological properties in
the functional connectome in SCD individuals. Our find-
ings provide novel insights into the pathophysiological
mechanism of SCD and highlight the potential for apply-
ing connectome-based metrics as diagnostic biomarkers.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s40035-020-00201-6.

Additional file 1: Supplemental Fig. 1. Altered connections illustrated
by rich club, feeder and local connections based on different thresholds.
A. the top 10% node degree as threshold; B. the top 20% node degree as
threshold. Abbreviations: SCD, subjective cognitive decline; HC, healthy
control. * indicates a statistical difference between groups, p < 0.05.

Additional file 2: Supplemental Fig. 2. The altered nodal shortest
path length and nodal clustering coefficient between SCD and HC. A.
The SCD group showing significantly decreased nodal shortest path
length in thirteen brain regions; B. The SCD group showing significantly
increased nodal clustering coefficient in sixteen brain regions;
Abbreviations: SCD, subjective cognitive decline; HC, healthy control; The
color bar represents the label of brain regions in AAL-90 atlas.

Additional file 3: Supplemental Fig. 3. Relationships between altered
network metrics and biomarkers in the HC group. No significance was
found between the CSF Aβ1–42 and the nodal strength of PHG.L (r =
0.197, P = 0.345) (A), nodal global efficiency of the TPOsup.R (r = 0.069,
P = 0.744) (B) and nodal local efficiency of the IFGoperc.R (r = − 0.046, P =
0.826) (C) in the HC group. Abbreviations: HC, healthy control; PHG.L, left
parahippocampal gyrus; TPOsup.R, right temporal pole-superior temporal
gyrus; IFGoperc.R, right inferior frontal gyrus-opercular part; CSF, cerebro-
spinal fluid; Aβ, amyloid-β.

Additional file 4: Supplemental Table 1. Brain areas and their
abbreviations in the AAL-90 atlas.

Additional file 5: Supplemental Table 2. The comparison of nodal
properties between HC and SCD. The SCD group showed significantly
increased nodal strength in the right superior frontal gyrus and the
bilateral medial temporal lobe (P < 0.05, FDR corrected). The increased
nodal global efficiency and nodal local efficiency mainly in the frontal,
temporal and parietal regions were found in the SCD group (P < 0.05,
FDR corrected). Abbreviations: SCD, subjective cognitive decline; HC,
healthy control.

Additional file 6: Supplemental Table 3. The comparison of nodal
shortest path length and nodal clustering coefficient between HC and
SCD. The results of the nodal shortest path length and nodal clustering
coefficient were described in this table. Abbreviations: SCD, subjective
cognitive decline; HC, healthy control.

Additional file 7: Supplemental Table 4. The subnetwork derived
from NBS analysis. A single connected subnetwork with 30 nodes and 35
connections exhibited higher connection strength in the SCD group than
in the HC group (p < 0.001, corrected). Abbreviations: SCD, subjective
cognitive decline; HC, healthy control.

Additional file 8: Supplemental Table 5. The features selected by
SVM for HC VS SCD classification. Nodal properties and connections were
utilized to classify whether a sample belonged to the SCD group.
Abbreviations: SCD, subjective cognitive decline; HC, healthy control;
SVM, support vector machine.

Additional file 9: Supplementary materials legends. Details
regarding methods and materials.
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